
Program 1: Submit via file attachment with email 
 
For this question you will submit a file called charFreq.m as well as the sample 
output specified below as results.txt, with extra credit answered below. 
 
Write a function that analyzes how many times the characters ‘a’ to ‘z’ occur in a 
file, and writes those counts, as well as their frequencies, to a specified output 
file. 
 
function [ ] = charFreq( inputFile, outputFile ) 
 % 
 % inputFile specifies the file whose characters should 
 % be analyzed. 
 % 
 % outputFile will contain the counts of the characters 
 % ‘a’ to ‘z’ found in the input file, and will 
 % give the frequency of each character. 
 % Frequency is the number of occurrences 
 % divided by the total characters in the file. 
 % 
 % If inputFile or outputFile cannot be opened, the 
 % function will print a descriptive error message and 
 % return. 
 % 
 
Be sure to test your function on a test file. An example of the output can be 
downloaded on the course schedule. 
 
Now, download the file “warpeace.txt” and run your function, generating a file 
called “results.txt”. Submit this results file with your code. You can find this file 
on the course schedule on the exam date. 
 
  



Program 2: Submit via file attachment with email 
 
For this question you will submit one file, RPS.m, with one main 
function and three subfunctions.  
 
Rock-Paper-Scissors is a two-player game that proceeds by rounds, 
and in each round both players decide to play one of the three titular 
moves: Rock, Paper, or Scissors. If the players play the same move 
then neither wins that round. However, if different moves are played, 
then scissors beats paper, paper beats rock, and rock beats scissors. 
 
1) Write a subfunction that randomly picks one of rock, paper, or 
scissors and returns an ‘R’, ‘P’, or ‘S’ accordingly. Note that 
capitalization is important, because MATLAB does not consider ‘P’ to 
be the same as ‘p’, or ‘R’ to be ‘r’, or ‘S’ to be ‘s’. 
 
function [ pick ] = RPSplay( pR, pP, pS ) 
% Input: 
% pR is the probability (0-1) of picking rock 
% pP is the probability (0-1) of picking paper 
% pS is the probability (0-1) of picking scissors 
% Output: 
% pick is one of ‘R’ ‘P’ or ‘S’ denoting which move 
is picked 
 
2) Write a subfunction that plays one round of Rock-Paper-Scissors. 
This function takes six arguments that specify the probability of each 
player’s moves. 
 
function [ winner ] = RPSround ( p1R, p1P, p1S 
                                 p2R, p2P, p2S ) 
% Input: 
% p1R, p1P, p1S are the probabilities of player 1  
% p2R, p2P, p2S are the probabilities of player 2  
% Output: 
% winner is a scalar value indicating the winner 
%  0 if neither player wins 
%  1 if player 1 wins 
%   2 if player 2 wins 



3) The third subfunction of the file should play an entire game of 
rock-paper-scissors and report the winner. This should call the 
RPSround() subfunction repeatedly until one player wins the number 
of times specified by roundsToWin 
 
function [winner plays] = RPSgame ( p1R, p1P, p1S,  
                                    p2R, p2P, p2S,  
                                    roundsToWin ) 
% Input: 
% 
% p1R, p1P, p1S are the probabilities of player 1  
% p2R, p2P, p2S are the probabilities of player 2  
% roundsToWin is the number of rounds needed for a 
%    a player to win. Example: if roundsToWin=3, 
%    then the game ends when one player wins a 
%    total of three times. 
% 
% Output: 
% 
% winner is a scalar value indicating the winner 
%  1 if player 1 wins 
%   2 if player 2 wins 
% 
% plays is a scalar value saying how many rounds 
%   were played before the game ends. For example, 
%   if roundsToWin=3, then player 1 might have won 
%   three times, player 2 might have won twice, and 
%   they may have tied once, for a total of 6 plays 
  



4) The main function of the file should play a specified number of 
games of rock-paper-scissors, print the overall winner, their win 
percentage, and average number of plays. For example, the 
invocation: 
 
RPS( 1/3, 1/3, 1/3, 1/3, 1/3, 1/3, 3, 10000 ) 
 
might print:  
 
Player 2 won 52% of the time with an average game length of 4.5 
plays.  
 
If roundsToWin is not specified, it should default to 3.  
If totalGames is not specified it should default to 1000. 
 
function [] = RPS( p1R, p1P, p1S,  
                   p2R, p2P, p2S,  
                   roundsToWin, totalGames)  
% Input: 
% 
% p1R, p1P, p1S are the probabilities of player 1  
% p2R, p2P, p2S are the probabilities of player 2  
% 
% roundsToWin is the number of rounds needed for a 
%    a player to win. Example: if roundsToWin=3, 
%    then the game ends when one player wins a 
%    total of three times. Defaults to 3. 
% 
% totalGames is the number of games to play. 
%    Defaults to 1000.  
% 
% 
% Output: text only 
 
 
 



Program 2 Questions (10 points): Submit in class 
 

1) Play 1000 games of rock-paper-scissors for three rounds to win 
where each player picks rock, paper, and scissors evenly (i.e. 
with probability 0.333). Give the output of your program. Does 
your output make sense? 

 
 
 
 
 

2) Play 1000 games for three rounds to win where player one 
picks moves evenly (i.e. with probability 0.333) and player two 
only plays rock and paper with probability 0.5. Give the output. 

 
 
 
 
 

3) Play 1000 games for three rounds to win where player one 
picks moves evenly (i.e. with probability 0.333) and player two 
only plays rock with probability 1. Give the output.  

 
 
 
 

4) Play around with other possible player strategies. Assume your 
opponent always picks moves evenly and at random. What 
does your investigation show? 



Extra Credit (5 points) 
 
Program 1 can be used to decrypt the following message, 
which was encoded with a Caesar Cipher (look it up online). 
Compare the letter frequencies in the message below with 
the frequencies you found in the longer work. Write a short 
description of your decryption process. 
 
TAI XAZS PA KAG 
IMZF FTQEQ YQEEMSQE 
FA DQYMUZ EQODQF? 
 
U IMZF FTQY FA DQYMUZ 
EQODQF RAD ME XAZS ME 
YQZ MDQ OMBMNXQ AR QHUX. 
 
  



Program hints: 
 
Program 1: 
 
Remember that you can use the ASCII encoding to treat characters 
like numbers when it is convenient. For example: 
 

x ‘a’ is ASCII 97 
x ‘a’ + 1 is equal to ‘b’ 
x ‘a’ + 2 is equal to ‘c’ 
x Etc… 

 
The file warpeace.txt has been converted entirely to lowercase. You 
don’t need to consider capitalization. 
 
 
Program 2: 
 
Be careful when comparing character values, ‘P’ is not the same as 
‘p’. 
 
Remember that only the top level function can be called from outside 
the function file. 
 
Test each subfunction you create as you go. Make sure your results 
make sense before working on the next part of the program. 


